Solving Systems of Linear Equations Based on Approximation Solution Projection Analysis

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a class of linear projection equations ?

Many interesting and important constrained optimization problems in mathematical programming can be translated into an equivalent linear projection equation u = P u ? (Mu + q)]: Here, P () is the orthogonal projection on some convex set (e.g. = R n +) and M is a positive semideenite matrix. This paper presents some new methods for solving a class of linear projection equations. The search direc...

متن کامل

Solving a System of Linear Equations by Homotopy Analysis Method

‎In this paper‎, ‎an efficient algorithm for solving a system of linear‎ ‎equations based on the homotopy analysis method is presented‎. ‎The‎ ‎proposed method is compared with the classical Jacobi iterative‎ ‎method‎, ‎and the convergence analysis is discussed‎. ‎Finally‎, ‎two‎ ‎numerical examples are presented to show the effectiveness of the‎ ‎proposed method.‎

متن کامل

Solving Linear Systems of Equations

Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

Numerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order

In this ‎article‎‎, ‎an ‎ap‎plied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of ‎high order ‎Volterra ‎integro-differential‎ equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical ‎illustrations‎ have been ‎solved‎ to ‎assert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Computer Systems

سال: 2021

ISSN: 2255-8691

DOI: 10.2478/acss-2021-0007